Sort by
A multinational survey of potential participant perspectives on ocular gene therapy.

Amidst rapid advancements in ocular gene therapy, understanding patient perspectives is crucial for shaping future treatment choices and research directions. This international cross-sectional survey evaluated knowledge, attitudes, and perceptions of ocular genetic therapies among potential recipients with inherited retinal diseases (IRDs). Survey instruments included the Attitudes to Gene Therapy-Eye (AGT-Eye), EQ-5D-5L, National Eye Institute Visual Functioning Questionnaire (NEI-VFQ-25), and Patient Attitudes to Clinical Trials (PACT-22) instruments. This study included 496 participant responses (89% adults with IRDs; 11% parents/guardians/carers) from 35 countries, with most from the United States of America (USA; 69%) and the United Kingdom (11%). Most participants (90%) indicated they would likely accept gene therapy if it was available, despite only 45% agreeing that they had good knowledge of gene therapy. The main sources of information were research registries (60% of participants) and the internet (61%). Compared to data from our recently published Australian national survey of people with IRDs (n = 694), USA respondents had higher knowledge of gene therapy outcomes, and Australian respondents indicated a higher perceived value of gene therapy treatments. Addressing knowledge gaps regarding outcomes and financial implications will be central to ensuring informed consent, promoting shared decision-making, and the eventual clinical adoption of genetic therapies.

Open Access Just Published
Relevant
Adeno-associated virus genome quantification with amplification-free CRISPR-Cas12a.

Efficient manufacturing of recombinant Adeno-Associated Viral (rAAV) vectors to meet rising clinical demand remains a major hurdle. One of the most significant challenges is the generation of large amounts of empty capsids without the therapeutic genome. There is no standardized analytical method to accurately quantify the viral genes, and subsequently the empty-to-full ratio, making the manufacturing challenges even more complex. We propose the use of CRISPR diagnostics (CRISPR-Dx) as a robust and rapid approach to determine AAV genome titers. We designed and developed the CRISPR-AAV Evaluation (CRAAVE) assay to maximize sensitivity, minimize time-to-result, and provide a potentially universal design for quantifying multiple transgene constructs encapsidated within different AAV serotypes. We also demonstrate an on-chip CRAAVE assay with lyophilized reagents to minimize end user assay input. The CRAAVE assay was able to detect AAV titers as low as 7e7 vg/mL with high precision (<3% error) in quantifying unknown AAV titers when compared with conventional quantitative PCR (qPCR) method. The assay only requires 30 min of assay time, shortening the analytical workflow drastically. Our results suggest CRISPR-Dx could be a promising tool for efficient rAAV genome titer quantification and has the potential to revolutionize biomanufacturing process analytical technology (PAT).

Relevant
Advancing rare disease treatment: EMA's decade-long insights into engineered adoptive cell therapy for rare cancers and orphan designation.

Adoptive cell therapy (ACT), particularly chimeric antigen receptor (CAR)-T cell therapy, has emerged as a promising approach for targeting and treating rare oncological conditions. The orphan medicinal product designation by the European Union (EU) plays a crucial role in promoting development of medicines for rare conditions according to the EU Orphan Regulation.This regulatory landscape analysis examines the evolution, regulatory challenges, and clinical outcomes of genetically engineered ACT, with a focus on CAR-T cell therapies, based on the European Medicines Agency's Committee for Orphan Medicinal Products review of applications evaluated for orphan designation and maintenance of the status over a 10-year period. In total, 30 of 36 applications were granted an orphan status, and 14 subsequently applied for maintenance of the status at time of marketing authorisation or extension of indication. Most of the products were autologous cell therapies using a lentiviral vector and were developed for the treatment of rare haematological B-cell malignancies. The findings revealed that 80% (29/36) of the submissions for orphan designation were supported by preliminary clinical data showing a potential efficacy of the candidate products and an added clinical benefit over currently authorised medicines for the proposed orphan condition. Notably, in 89% (32/36) of the cases significant benefit of the new products was accepted based on a clinically relevant advantage over existing therapies. Twelve of fourteen submissions reviewed for maintenance of the status at time of marketing authorisation or extension of indication demonstrated significant benefit of the products over existing satisfactory methods of treatment within the approved therapeutic indications, but one of the applications was withdrawn during the regulatory evaluation.This article summarises the key findings related to the use of engineered ACT, primarily CAR-T cell therapies, in targeting and treating rare cancers in the EU. It emphasises the importance of use of clinical data in supporting medical plausibility and significant benefit at the stage of orphan designation and highlights the high success rate for these products in obtaining initial orphan designations and subsequent maintaining the status at the time of marketing authorisation or extension of indication.

Open Access
Relevant
A shedding analysis after AAV8 CNS injection revealed fragmented viral DNA without evidence of functional AAV particles in mice.

Adeno-associated viruses (AAV) are commonly used in the scientific field due to their diverse application range. However, AAV shedding, the release of virions from the host organism, can impact the safety of AAV-based approaches. An increasing number of authorities require the characterization of vector shedding in clinical trials. Recently, shedding of transduced laboratory animals has also gained attention regarding the necessary disposal measures of their waste products. However, no explicit international regulations for AAV-shedding waste exist. Generating insights into shedding dynamics becomes increasingly relevant to help authorities develop adequate regulations. To date, knowledge of AAV vector shedding in mice is very limited. Moreover, confirmation of functional shed AAV particles in mice is missing. Therefore, we examined feces, urine, and saliva of mice after CNS injection with AAV2/8. It revealed the presence of viral DNA fragments via qPCR for up to 4 days after injection. To examine AAV functionality we performed nested PCR and could not detect full-length viral genomes in any but two collected feces samples. Furthermore, a functional infection assay did not reveal evidence of intact AAV particles. Our findings are supposed to contribute murine shedding data as a foundation to help establish still lacking adequate biosafety regulations in the context of AAV shedding.

Open Access
Relevant
Are genetically modified protozoa eligible for ATMP status? Concerning the legal categorization of an oncolytic protozoan drug candidate.

Neospora caninum is an obligate intracellular protozoan that affects several animal species. It is not pathogenic for humans, and its ability to infect and lyse a variety of cells and stimulate the immune system makes it an interesting drug candidate in oncology. The intrinsic oncolytic properties of N. caninum have been confirmed in several preclinical models. Moreover, it can be modified to improve its safety and/or efficacy against cancer cells. In this study, we propose the legal categorization of this new biological drug candidate and the impact of modifications, notably the integration of a suicide gene, the deletion of a gene allowing its multiplication in healthy cells, and/or the insertion of a gene coding for a therapeutic protein into its genome. When unmodified, N. caninum can be categorized as a biological medicinal product, whereas modifications aimed at increasing its safety classify it as a Somatic Cell Therapy Medicinal Product, and modifications aiming to increase its efficacy or both safety and efficacy make it as a Gene Therapy Medicinal Product. This categorization is fundamental because it determines the guidelines applicable for preclinical development. These guidelines being numerous and complex, we have focused on the key requirements necessary for the development of the future medicinal product.

Relevant
Multicenter assessment and longitudinal study of the prevalence of antibodies and related adaptive immune responses to AAV in adult males with hemophilia.

Adeno-associated virus (AAV) based gene therapy has demonstrated effective disease control in hemophilia. However, pre-existing immunity from wild-type AAV exposure impacts gene therapy eligibility. The aim of this multicenter epidemiologic study was to determine the prevalence and persistence of preexisting immunity against AAV2, AAV5, and AAV8, in adult participants with hemophilia A or B. Blood samples were collected at baseline and annually for ≤3 years at trial sites in Austria, France, Germany, Italy, Spain, and the United States. At baseline, AAV8, AAV2, and AAV5 neutralizing antibodies (NAbs) were present in 46.9%, 53.1%, and 53.4% of participants, respectively; these values remained stable at Years 1 and 2. Co-prevalence of NAbs to at least two serotypes and all three serotypes was present at baseline for ~40% and 38.2% of participants, respectively. For each serotype, ~10% of participants who tested negative for NAbs at baseline were seropositive at Year 1. At baseline, 38.3% of participants had detectable cell mediated immunity by ELISpot, although no correlations were observed with the humoral response. In conclusion, participants with hemophilia may have significant preexisting immunity to AAV capsids. Insights from this study may assist in understanding capsid-based immunity trends in participants considering AAV vector-based gene therapy.

Open Access
Relevant
Gene therapy corrects the neurological deficits of mice with sialidosis.

Patients with sialidosis (mucolipidosis type I) type I typically present with myoclonus, seizures, ataxia, cherry-red spots, and blindness because of mutations in the neuraminidase 1 (NEU1) gene. Currently, there is no treatment for sialidosis. In this study, we developed an adeno-associated virus (AAV)-mediated gene therapy for a Neu1 knockout (Neu1-/-) mouse model of sialidosis. The vector, AAV9-P3-NP, included the human NEU1 promoter, NEU1 cDNA, IRES, and CTSA cDNA. Untreated Neu1-/- mice showed astrogliosis and microglial LAMP1 accumulation in the nervous system, including brain, spinal cord, and dorsal root ganglion, together with impaired motor function. Coexpression of NEU1 and protective protein/cathepsin A (PPCA) in neonatal Neu1-/- mice by intracerebroventricular injection, and less effective by facial vein injection, decreased astrogliosis and LAMP1 accumulation in the nervous system and improved rotarod performance of the treated mice. Facial vein injection also improved the grip strength and survival of Neu1-/- mice. Therefore, cerebrospinal fluid delivery of AAV9-P3-NP, which corrects the neurological deficits of mice with sialidosis, could be a suitable treatment for patients with sialidosis type I. After intracerebroventricular or facial vein injection of AAV vectors, NEU1 and PPCA are expressed together. PPCA-protected NEU1 is then sent to lysosomes, where β-Gal binds to this complex to form a multienzyme complex in order to execute its function.

Relevant
Preclinical dose response study shows NR2E3 can attenuate retinal degeneration in the retinitis pigmentosa mouse model RhoP23H+/.

Retinitis pigmentosa (RP) is a heterogeneous disease and the main cause of vision loss within the group of inherited retinal diseases (IRDs). IRDs are a group of rare disorders caused by mutations in one or more of over 280 genes which ultimately result in blindness. Modifier genes play a key role in modulating disease phenotypes, and mutations in them can affect disease outcomes, rate of progression, and severity. Our previous studies have demonstrated that the nuclear hormone receptor 2 family e, member 3 (Nr2e3) gene reduced disease progression and loss of photoreceptor cell layers in RhoP23H-/- mice. This follow up, pharmacology study evaluates a longitudinal NR2E3 dose response in the clinically relevant heterozygous RhoP23H mouse. Reduced retinal degeneration and improved retinal morphology was observed 6 months following treatment evaluating three different NR2E3 doses. Histological and immunohistochemical analysis revealed regions of photoreceptor rescue in the treated retinas of RhoP23H+/- mice. Functional assessment by electroretinogram (ERG) showed attenuated photoreceptor degeneration with all doses. This study demonstrates the effectiveness of different doses of NR2E3 at reducing retinal degeneration and informs dose selection for clinical trials of RhoP23H-associated RP.

Open Access
Relevant